A REVISTON OF THE GENERA WTTH MICROSCLEREA 1NCLUDED, OR PROVTSTON゙ALKY TNCLUIED, IN THE FAMDIY AXIVELLIDAE; WITH いESCR1PTUONS OF SOME AUSTRALIAN SPECIES. Part i. (Porifera.)

By E. F. Habbiny, B.Sc., Linnean Marleay Felbow of the Nociety in Zoolori.
(Plates xxi--xxix., figs. 1-ə also xrxix., figs.6,7: and Text-figs. 1-9.)

Gemus 'Tracirychates Carter.

Definition.--Axinellider(?) typieally of arborescent habit; with an axially conkensed, reticulate skeletom of spiculo-spongin filme. The megaseleres are diactinal and of a single category, varying in form from oxea to strongy. The eharacteristic microscleres are spinispinule, to which are usually adeled smowth microstrongyla.

Type-species, T'. lavispirtlifor Carter.
Thelusive of those here added to it, Trachycladas comprises now seren species (together with several varieties), all of which are from the southem and south eastern coasts of Anstralia. The hitherto-tescribed species referable to the genus are fom; viz, T. In cispirnlifer Carter (the type-species), and the three deseribed by lemenfeld, very imerfectly, under the names spirophom digitata, N. becterium, and S'pirophorella digiteta; but, for reasons already indicated in my previous paper, I rejeet the last-mamed, relegating it to the synomymy of T '. digitetus-a redespription of which is given below. The other two species, T'. leverspirntifer and T'. Joctorizm, are apmantly unrepresented among those examined by me; but the latter may prove to be identical with T. pustulosns, spon. The specimens from Port Phillip recorded and brietly deseribed as examples of T. lovispumbifer hy Dendy(7) appear to me to represent at least two distinet forms, which I describe below as varieties of T. refeporos"s, sp.u., and of T. diyitutus respectively.

In the characters which it combines, the genus is a most anomalous one; and the question of its relationship affords scope for considerable speculation. The form of the spinispirule inesistibly suggests their derivation from spirasters; and this view of their origin receives strong support from the fact that identically similar spicules - which undoubtedly are derivel from spirasters -oceur in Spmostrella (?) spinispirnlifern (Carter) Dendy(7), and Spierestrolla (?) dilututa (Kieschnick) Thiele(39), and from the fact that, in the latter species (which is apparently unique in this respect among the spirastrellitar), the megascleres are united into definite fibres by means of spongin. Also in support of this view, is the fact of the presence of microstrongyla. On the other hand, in structural features of the skeletom, the genus conforms to a type which is characteristie of genera in which the microseleres are sigmata or are such as are known to oecur in association with sigmata. Trachyeladus, therefore, appars to form a connecting link between the spirastrellider and the sigmatophorous section of the Monaxonida, anel provieles gromed for the view that these two groups are derived from a common Momaxonid stem.*

As the several species agree very closely in ly far the greater momber of their chatacters, a peliminary genemal account of them is desirable in order to obviate to some extent the necessity of repetition in their separate descriptions.

With the possible exception of T'. bacterium-which is deseribed by Lendenfeld as "eiformig, mit schmaler Basis festgewachsen" -all the species are of ramose halit, typically stipitate and more or less arborencent, with banches which are circular or nearly so in erossssection (oceasionally somewhat compressed in T. reteporosins), and never of considerable stoutness; in T'. pmstulosins alone, the branches generally remain much abbreviated, closely crowded, and more or less coalesced together proximally; thus sometimes (throngh excessive reduction and fusion) producing a

[^0]compact solict mass, or head, with digitiform protuberancess (Pl. xxi., fig. $\overline{5}$); aceasionally, in the case of T. retequoroster, the sponge may remain umbranched-comsisting simply of a long ancl slender, undivided stem. Aecording to the species (or varioty), the branches may be either eylindrical, distally expanded (i.e., more or less clavate), or grahlually tapered. Anastomosis between the branches ocem's to a greater or lexs extent almost invaliably, execpt perhaps in the case of T 'retenorosus. The mode of branching is probably never dichotomoms, though occasionally it may appear so; momally at any rate, the hanches arise laterally and alventitionsly.

The oscula are of small size, very seldom as mueh as 1 mm . in diameter, and are generally scattered over the surface irregularly; in 'T. refeporosns, however, they show a decided tendency to be aromged in longitndinal series, especially along the edges of the branches when these are compressed. In T. pustulosins, the oscula are restricted amost entirely to the distal parts of the branches, while in T. bucterium they are said to oceur arranged in groups.

The surface is smooth, or is provided with momerous minute prominences (up-pushings of the dermal layer) protuced ly the extremities of impinging skeletal filnes. 'These elevations constitute a marked feature of the surfaceomly in T '. pmstulosus (amb T. bacterium?) in which they have the aploarance of small pimples, and in T. scubrosus (Pl. xxi., fig.t; Pl. xxviii., fig. G), in which they take the fom of minnte sharp conuli; in the remaining species, they are either imperceptible or prorluce merely the appearance of granulation. In any case, whether surface-elevations ocenr or not, each point on the surface at the extremity of a skeletal fibre is the location of a small :urea wer which the dermal membrane is atherent to the underlying tissues and free from dermal pores, whilst elsewhere it overlies sulotermal spaces and is proforated by momerous pores. The pores are cither scattered singly and for the most part suberuidistantly, at an average distance apart not much exceeding their own diametor, as, for example, in T'. digitretns and its varieties (Pls. xxvi., xxviii.):
or they are closely armanged in subcircular, sieve-like groups, as in T. reteporosus and T. pustulusus (Pl . xxvi., figs. $4,5,7,8 ; \mathrm{Pl}$. xxvii., figs. 5,6). In the latter species, the surface presents a minutely reticulate appearance.

Dried specimens are whitish on the surface, wwing to the presence of a thin dermal crust of spinispiral micoros leres; in akohol, the colour varies in the different species, from whitishgrey to pale orange-yellow. 'The colvor of living specimensknown so far only in the case of ' T ' retepmosms, in which it is brilliant orange, red or scarlet-is probably always to some extent detemmed by, or dependent upon, that of a symbiotic Myxophycean alga, which appears to be invariably present in all the species, often in enommous numbers.
'The main skeleton, which is composed of mon-phmose spiculospongin fibres, is almost exactly similar in its conformation (except, presumaloly, in 'T'. bacterimm) to that described by Vosmaer* as typical of the genus Arimplla (s.str.). In the central rewion of each branch, it forms an abruptly delimited dense core, or axial fune, composed of ramifying and intermiting longitudinal main fibres additionally comected (more or less obliguely) by a greater or lesser number of transserse fibres, and presenting (in longitudinal section) a somewhat lattice-like arrangement (Pl. xxi., fig.l); and extra-axially it consists mainly or almost solely of very sparsely ramifying, radial fibres, which arising as banches from the longitudinal fibres (usually at some distance within the axial fune), run outwards to the surface at approximately equal distances apart, and are connected, only at irregular and usually distant intervals, by spongin-ensheathed single spicules and by pancispicular fibres of a single spieule's length (Pl. xxv., fig.l). The fibres are composed chietly or almost entirely of spicules, which are arranged for the most part parallelly or nearly so (though not, as a rule, very compactly nor in a very orderly fashion); and this arangement is maintained to the vory ex-

[^1]tremities of the (radial) fibres, the terminal spicules of which show no temlency to sprearl pembillately. The ontlines of the fibres, as seen in coss-section, are very irregnlan (Pl. xxvi., fig. 9). In the axial rewion of the skeleton, the fibre-spicules are less compactly and less regularly aranged than in the ratial filnes, and the appearance of imegularity is much incrased by the presence of many additiomal spicules lying between the fibmes: outsite the axial regiom, interstitial megascleres are exreedingly rate. The chatracteristic microscleres-the spinispirula the scattered always in great abundance thomghout all parts of the interior, and at the surface ocour elosely coowded in a well-rletined layer, whieh constitutes the dermal skeletom. The microstrongya, when present, are confined to the extra-axial chomosome.

The chief specific differences, in so far as structural features of the skeleton are concerned, are with respect to:- (i.) the density of the axial fune: (ii.) the ratio between the diameter of the fume and that of the whole branch: (iii.) the stoutness of the skeletal fibres: (iv.) the amome of spongin entering into the eomponsition of the fibres; (v.) the fiequency of comection between the radial fibres by means of transverse fibres; and (vi.) the angle of inclination of the radial filmes, i.e., their dinection relatively to the longitudinal axis of the branch. I further difference, however, is presented by T. pustulusus, in which the skeleton is axially condensed only in the stalk and in the lowermost purtions of the branches: while in T. buctorium, apparently, an axial condensation is not developed. In order most radily to perecive, and also most accurately to determine, the distinctive characters of the skeleton in the different species, it is necessaly to study the skeleton ficed of the soft parts.

The megascleres are slightly curved oxea and strongyla (and rare styli), oceuring intermingled, and commected by intermediate forms; the oxea, on the average, are slightly longer and stonter than the strongya and mot so nearly of mifom diameter, but otherwise differ from them omly in the character of their extremities. Both in regard to the shape and the size of the megascleres, the two species dittering most widely are 'T. screbroste
and T. retpporosus: in the former, strongyla are extremely rare, and the megascleres are almost exclusively sharp-pointed, fusiform wea, attaining a maximum size of 530 by 27μ; in the latter, strongyla and oxea are about equally nomerous, the oxea are mostly more or less blunt-pointed and but very slightly fusiform, and their maximmm size usually does not exceed 300 by 8μ. In most of the species, a certain proportion of the megascleres (apparently those alone which ocenr extra-fibrally in the axial region of the skeleton) are found to attain an increasingly larger size as one proceeds towards the older portions of the sponge, with the result that, in the stalk, the maximum size of the megascleres is notably greater than in the uppermost parts of the branches; and these largest spicules, even in the species in which strongyla aboumd, are almost without exception oxea. The spicules of the fibres are no larger in the stalk than elsewhere.

The spinispirulee are minute, entirely spimulous, for the most part regularly corkserew-shaped spicules, rarely of more than two complete turns; in addition, they comprise a series of simpler forms, of various shapes ranging from that of a much contort S, through C-shaped forms, to straight or nearly straight rods (Textfig. 3). The proportionate number of these simpler forms varies in the different species, but the degree of variability in this respect, as well as in other charasters of the spirulat, is not sutlicient to be of diagnostic value. An exception to this rule, however, is possibly afforded by the spirule of 7 . levispirulifer, which have been described by Carter as smooth; but it is more probable that the spicules, in this casc, were not examined under a sutticiently high power to render their spination visible.

The microstrongyta are inconstant in oecurrence, and they may be either numerous or scaree, or perhaps sometimes entirely absent, in different specimens of the same species; at any rate, this was found to be the case in T. digitutus (typical variety), and T '. reteporosis (var. ?) -of which alone a number of speeimens were available for examination. That they are proper spicules, however, and not merely pathological products, is rendered certain by their degree of miformity in size and shape. Octasional
malformed individuals (ocemring least rarely in T. digitatus) are met with amongst them; and, in T. pustulossus, they are in jart reduced to spheres: but otherwise they have the form of shont straight rods, rounded at the extremities, often centrotylote, always quite smooth, and usually relatively stout.

The canal-system (Pl. xxiv., fig.3: Pl. xxv., fig. 2) is of the aphotal type, with oval to spherical fiagelated chambers, thongh with extremely short aphodi. The chambers measure from 25 to $35 /$ in diameter, and occur closely scattered throughout the entire extra-axial choanosome; within the region oceupied by the axial skeleton, however, they are absent, except in the youngest portions of the sponge (i.e., towards the extremities of the branches). Tn conformity with the symmetry of the skeleton, the main inhalant camals proceed from the subdermal spares towards the interior in a radial direction, parallel to that of the ratlial skeletal fibres, and are traceable inwards almost to the axial func; at their commencement, they are of such diameter as to be very distinctly visible to the naked eye, when a thin layer is pared from the surface (Pl . xxvi., fig. ${ }^{-2}$). The subtermal spaces are inextensive-least so in T ' pustulosus. The ectosomal layer, or dermal membrane, varies in thickness in the different species, from 50μ in T. reffoorosme to (oceasionally) 140μ in T. frastigatus, and, when best developed, has very much the appearance of a thin cortex; it is densely packed with spirula usually throughout, or nearly throughout, its eutire thickness.

In none of the species were ova or embryos observed.
'Trachycladus scabrosus, spenov.
(Pl. xxi., fig.t; Pl. xxiii., fig.9; Pl. xxviii., fig.6.)
Dirgmosis.-Branches cylindrical, rather slender; of appoximately uniform diameter throughout their length, Surface densely beset with small, sharp conuli formed by the extremities of the radial skeletal fibres. Demmal layer comparatively thin: superficially packed with spiruke. Oscula and pores (?). Skeleton with an extremely dense axial fune of diameter exceetling the lensth of the ratial tibres. Radial fibres directed nearly perpendicularly to the skeleton-axis, mostly between 120 and 170μ in stoutness, com-
posert almost solely of spicules. Megascleres, sharp-pointed fusiform oxea, racly passing into strongyla, and less rarely into styli; maximom size, $4 N^{\prime}() \times 3 \mu$ in the branches, wecasionally as much as $530 \times \underset{\sim}{2} p$ in the stalk. Mierostrongyla scarce.

Lerr.- Off Port Jackson. ("Thetis" Experlition).
E.rtermal fertmres.-The species is known from a single example (Pl.xxi., fig.t), 108 mm . in total height, consisting of an elongated slender stalk and irregularly disposed eylindrical lnanches from 2.5 to 4 mm. in chameter. The specimen (which is invested over portion of the exterion by a calcareons bryozoan) is only imperfectly preserved, having evirlently suffered some amount of dessication prion to being placed in alcohol-in consequence of which the demal layer, while remaining guite intact, has to some extent shomben inwards upon the underlying skeleton. 'To this circmostance, in all probability, is largely due the marked degree in which the surface is rendered comulase by the onter ends of the skeletal fibres (Pl. xxviii., fig.(i): nevertheless, so enarse and stiff are these fibres that, even in the best-preserved specimens, the surface wonld almost certainly show some deeided visible effect of their impingement on it, and at least would be asperous ant hassh to the touch. The conuli are seldom much above !: mm. in height, very elose-set, and of hard feel; they are such that the surface has much the appearance of that of a fine rasp. The demal membrane is rery thin and very closely adlierent, accommodating itself exactly to the sharply contomed surface-inequalities; presumably it has undergone considerahle contration, since neither pores nor oscula are detectible. In consisteney, owing partly to its somewhat fried and shomken condition, but perhaps mainly to its very dense skeleton, the specimen is tough and hard, almost ineompressible; the branches are stithy flexible. The colour is brownish-grey on the surface, and dark brown in the interior: ${ }^{\text {a }}$

Shelefon.-The prepared skeleton, as seen in its entirety (P l. xxiii., fig. 9), is of a faintly brownish, light grey colour, and consists of a very stout and solid looking core, with eoarse and stifl, bristle-like, short radial fibres projecting therefrom on all sides,
in moderately close arras, almost at rightangles; when dry, it is hard and brittle. The core ocoupies never less than half the diameter of the branches, and the radial fibres seldom exceed 1 mm . in length. The latter, which are comnecterl only very sparsely by paucispicular transerse fibres (of a single spicule's length), vary in stoutness from about 110 to 190μ or so, and are composed atmost solely of spicules,-thein spongin being insufticient in quantity to form an external sheath, and becoming discernible only after staining. The fibres of the central axis, which als, are but very scantily provided with spongin, have their spicules less closely compacted than the radial fibres, and form so dense a lattice-like reticulation that, except in moderately thin sections, the ontlines of individual fibres can seldom be distinguished, and upen meshes do not appear.

Meyaselores. - These are almost exclusively oxea, slightly and usually somewhat angulately curved, fusiform, with gradually and regularly tapered, nearly always acntelypointed extremities; but strongyla and scarcer styli also occur-more especially in the stalk, where the proportional number of the former may exceed one in fiftern. In the stalk also, oecasional amisoxea are

Text-fig. 1. - Treechyclerdus scae b,owns. Megascleres: u, from the stalk; b, from the branches.
met with, as in T. digitatus and T' pustulosus; and the megascleres are there of notahly greater size than elsewhere. The strongyla are mostly not quite cylindrical in shape, but slightly fusiform: they are of lesser length, on the average, than the oxea, and, in the case of the shortest, are relatively much stonter. Althongh strongyla are present in far greater number than styli, spicules intemediate in form between them and oxea are of less frequent occurrence than those intermediate between styli and oxea. The maximum size of the megascleres is not greater than $480 \times 93 \mu$ in the branches, and about $530 \times 28 \mu$ in the statk; the oxea are very rarely less than 330μ in length, and proportionately slender, but the shortest strongyla (which may exceed 20μ in stontness) fall below 200μ.

Miroosderes.-The spivulat are mostly of between 1 and $\cdot-$ turns and from \because to 3μ in stontness; Chaped forms are rather scarce, and straight rods rare. The microstrongyla are very scarce, seldom centrotylote, and from 15×3 to $20 \times 5 \mu$ in size.

> Trachycladus fastimatus, sp.nov. (Pl. xxi., fig.l; Pl. xxibi., fig. 10. .

Diagmosis.-Profnsely branched. Branches elongated and tapering: anastomosing at points of contact. Sinface smooth and glabrous. Oscula (?). Dermal layer strongly developed, dense, opaque; with closely packed spirule forming a layer 70 140μ thick. Inhalant pores dispersed singly. Skeleton with a rather dense axial fune, of diameter generally less than the length of the radial fibres. Radial fibres directed at an angle of from 35° to 60° with the skeleton-axis; very rarely more than $20-25 \mu$ in stontness; their spicules cemented by a scarcely perceptible amount of spongin. Extra-axial connecting fibres few, mostly unispicular. Megascleres almost exclusively diactinal, mostly more or less rounded off at the ends, very commonly approximating in form to strongyla, but nearly always more or less(slightly) fusiform; only slighter, if at all, of greater dimensions in the stalk than elsewhere; in maximum size very rarely exceeding $520 \times 9 \mu$, and at most $560 \times 12 \mu$. Microstrongyla abundant in some parts, scarce in others.

Lor.-Great Anstralian Bight.

External features.-The single specimen (Pl. xxi., fig. 1) is of lnxuriantly arborescent habit, and measures 360 mm . in total height, being thas the largest example of the genus yet oltained: the number of its ultinate branches exceeds one hundred and fifty. The branches are elongated and relatively slender, gradually tapered, distally much attennated and flagelliform; the stontest are at most $尺$ mm. in diameter at their base. They are richly and, in places, intricately anastomosed, forming thus, as well as by their multitude, a dense and somewhat tangled mass. Unfortunately the specimen, although in alcohol, is not very perfectly preserved, owing to its having temporarily become partially dried (throngh breakage of the ressel eontaining it) while in course of transit from the collecting ground. In consequence of this-mainly, if not solely-the branches are withont exception much wrinkled longitudinally, presenting a shrivelled appearance: in life, apparently, their outline in cross-section was circular. The dermal layer, notwithstanding, remains intact, and exhibits no ontward indication of having been detrimentally affected: it has the form of a dense and tough, opaque membrane or skin, with an ont ward appearamer and texture much resembling that of rubber; is composed almost entirely of closely crowded spirule ; and is even now (after possible shrinkage) usually between 90 and $1 \because 0 \mu$, and oceasionally as much as 140μ, in thickness. Into the dernal membrane the skeletal fibres do not enter, nor do their extremities ever cause the surface to appear granular.

Examined with the naked eye, a transverse section of a branch shows, superfieially, a sharply delimited dense layer, 0.2 to 0.4 mm . in width, the appearance of which is extremely suggestive of a cortex. Under the microscope, however, the seeming cortex is seen to consist in part of a layer belonging to the choanosome, which layer, unlike the remainder of the choanosome, is so densely packed with parasitic algal rods as to assume a whitish-opaque appearance similar to that of the dermal layer itself. But, in all probability, this is not a constant feature.

Presmably owing to their having become closed -as a result of the contraction undergone by the specimen-oscula are not indicated: in life, they must, at any rate, have been of very small size. The dermal pores, for the most part, have also disappeared: but traces of them remain, sufficient to show that they are distributed singly as in T^{\prime}. digitutus and its varieties.

ST:elofon.- The prepared skeleton, viewed in the gross (Pl. xxiii., fig. 10), is of a pale creamy-white colour, and shows a sharplycirrumscribed, dense core-region, of diameter rarely less than onethird, and frequently exceeding one-half, the total diameter of the branches. The extra-axial skeleton presents somewhat the appearance of fur, being composed apparently only of fine silkylowking ouncordly-directod (i.e., radial) fibres: under the microscope, howerer, the radial fibres are mostly found to be connected, thongh as a rule only at wery distant and irregular intervals, by delicate transverse fibres, often in the form merely of single spicules unensheathed by spongin. Even the component spicules of the radial fibres are rarely more than 4-or 5 -serial, and the spongin cementing them, soldom sutficient to form a visible sheath, is usually so small in quantity as barely to be perceptible even in stained sections of the skeleton. The main fibres of the axial skeleton, sare in the stalk and the basal portions of the older branches, are, for the most part, almost equally deficient in spongin, but the spicules composing them are less compactly arranged than in the radial fibres, and are all mostly somewhat greater in number: they form, with the aid of nmmerous connecting fibres and spicules, as well as by interunion among themselves, a close and rather intricate meshwork, in which the course of individual main fibres cannot be easily traced.

Meguscleres. -'The megascleres (which are approximately the same-thongh, on the average, perhaps not quite so slender-in the stalk as in the branches) comprise a goodly propertion of sharp-pointed oxea; but the great majority are intermediate forms showing every stage of transition between oxea and strongyla; moderately scarce styli also occur. The more sharply pointed spicules are very often irregularly ended, sometimes mucronate.

Their curvature, in proportion to their length, is slight, and often affects only a very limited portion of the central region of the spicule, the actines throughout nearly their whole length remaining straight: they are frequently, therefore, more correctly to be described as symmetrically bent, than as curved. Except in this respect, and in their much greater length, they most resemble, on the whole, the megaseleres of T. diyitutus var. strongylutus: the strongyla, however, differ from those of the latter, as, well as from thuse of the other two species in which they oecom plentifully, in that they are never quite cylindrical, but always taper slightly, with nearly uniform gradualness, from the middle to cither end. Their diameter is rarely more than one-fiftieth of their length, which ranges from about 330 to 560μ.

Microxderes.-The spirule are, withont exception, of less than 2 complete turns, and a very considerable proportion (amounting to at least 25%) are of less than 1 turn-i.e., are more or less Cshaped; they frequently attain to 2.5 or 3μ in stoutness. Rod-shaped derivatives are common, but are very seldom more than $\delta \mu$ in length.

The microstrongyla-which in most parts of the sponge are fairly abundantare, with tare exception, centrotylute and rather slender, very seldom exceeding 2.5μ in diameter; but oceasional stouter ones without the dilatation also oceur,

Text-fig. 2.
Trachycladus taxtigutus. Megascleres: a. fiom the stalk; b, from the branches.
which attain a diameter of 4 or $\delta \mu$; the length does not exceed 17μ. Malformed individuals, such as are of frequent occurrence in T. digitctus and T. pustulosus, are rarely to be fomid.
'Trachycladus digitatus Lendenfeld, et vart.
General diagmosis.-Branches moderately short, eylindrical to clavate, occasionally (abruptly) pointed, but never, so far as known, gradually tapered. Surface even, smooth to faintly granular. Oscula scattered irregularly over the entire surface, or (in the var. rlaratus) arranged, or tending to become arranged, in two longitudinal rows on opposite sides of the branches. Dermal membrane varying (in the different varieties) from 50 to 120μ in maximal thickness: with closely packed spirula throughout its entire thickness (except in the var. strongylatus, in whieh the spirulae are confined to a superficial layer). Dermal pores dispersed singly, at a distance apart from one another generally greater than their own diameter. Skeleton with moderately dense axial fune of diameter greater or less than the length of the radial fibres. Radial fibres directed at an angle of between 30° and 60° degrees to the axial direction; varying (in different varieties) from 50 to 90μ in maximal stoutness; with spongin rarely sufficient in yuantity to form a distinct ensheathing layer external to the spicnles. Megascleres-except in the var. stromyylatus (in which strongyla are the more numerous) consisting chiefly or almost exclusively of sharp-pointed oxea; of considerably greater maximum size and generally of more fusiform shape in the stalk of the sponge than in the branches; maximal size in the stalk varying (in different varieties) from not less than $350 \times 10 \mu$ to $530 \times 23 \mu$.

Hab.-South-eastern coast of Australia.
Trachycladus digitatus, typical form.
(Pl.xxii., figs.l, 2; Pl. xxiii., fig.l; Pl.xxvi., fig.2: Pl.xxvii., fig.l.)
1887. Spirophora diyitata; Lendenfeld(26), p. 794.
1888. Śpirophorella digitatu; Lendenfeld(27), p.236.
1914. Truchycladus digitatus; Hallmann(13), p.429.

Diagrosis.-Branches moderately slender (4 to 6 mm . in
diameter): approximately of uniform diameter throughout their length, or slightly pointed terminally. Oscula scattered irregularly. Dermal membrane np to 80 or 90μ in thickness. Radial fibres of greater length than the diameter of the axial fune: rarely as much as 75μ in stoutness. Megascleres almost exclusively more or less sharp-pointed oxea, varying in maximal size (in different specimens) from 300×9 to $380 \times 11 \mu$ in the branches, and from 440×15 to $510 \times 17 \cdot 5 \mu$ in the branches.

Loc.-Port Jackson.
Introductory.-The following description is based on form specimens (all in the collection of the Australian Museum), two of which are labelled Spirophora digitata in Lendenfeld's handwriting. Examination has also been made of a small piece of a British Museum specimen labelled with the same name, and, so far as one can judge from its spiculation,-the fragment heing insutficient to provide all the requisite information as regards other characters-this is of the same species. The specimens, nevertheless, are considerably at variance with Lendenfeld's description of S. digitata,-according to which the digitate branches are much compressed (4 mm . broad and 2 mm . thick), the surface shows "ein feines Netz erhabener Leisten," and the megascleres are styli. The statement regarding the megascleres one may reasonably presume to be erroneous, inasmuch as styli are otherwise unrecorded as occurring in the genus except sporadically as variants of oxea; but the other discrepancies are only explicable on the assumption either that the specimens (of both Musemms) are mislabelled, or that the species is wrongly describerl in respect of its external characters. The view here taken is that the latter. explanation is the true one.* As regards the evidence for the identification of Spirophorplla digitata with the present species, the reader is referred to a previous paper ($13, \mathrm{p} \cdot 429$).

[^2]The specimens labelled by Lendenfeld are in a dried and shrivelled condition, and look as if beach-wom, the more exposed portions of the surface being more or less denuded of their dermal layer and appearing as a consequence (owing to the projecting ends of the skeletal fibres) hispid or slightly shaggy. Their appearance is thus considerably different from that of the other two specimens, which are in alcohol and well preserved. As regards the latter, it is to be noted that in one of them, as in the two dried specimens, microstrongyla are present in great abundance, whereas in the other, microstrongyla are extremely scarce; but as both are exceedingly alike in other respects, and, moreover, were collected in the same haul, it is impossible to regard their differences as other than due to individual variation; and it was perhaps owing to Lendenfeld's having examined a specimen provided with only rave microstrongyla that no mention is made of such microscleres in his description of the species.

Errernal fertures.-The extemal habit is sutticiently portrayed in the figmes (Pl. xxii., figs. 1, 2) illustrating the two better-preserved specimens, the larger of which measures 125 mm . in height. The branches have a diameter of from 4 to 6 mm .: and the peduncle is of about the same stoutness. The surface is smooth, and glabrous or nearly so-the utmost effect occasioned by the impingement of the skeletal fibres upon it being (in the case of the alcoholic examples) a faintly gramular appearance here and there; should the sponge be removed from alcohol, however, and allowed partially to dry, the surface assumes a minutely pustulated appearance, much resembling (on a small scale) that of the human tongue. The irregularly, and rather distantly scattered oscula are never much greater than $\frac{1}{4} \mathrm{~mm}$. or thereabouts in diameter. Some of the man exhalant canals, in the terminal
and even the figures cannot always be trusted. In pronf of the last assertion, one need only compare, for example, the description with the figure in the cases of the following species:-Ceraochalina reteplax (p.785; Pl. xix., fig. 17); Euchulinopsis minimu (p.816; Pl. xviii., fig.3); (halinodendron exigumm (p.819; Pl. xxvi., fig.65); Chulinodendron minimum (p.8:20; Pl. xxvi., fig.71); and Chalinorhaphis digitata (p .822; Pl. xxvi., fig. 6 (2).
part of their course, run for a short distance close below the dermal membrane, and, being visible through it, present an appearamee as of veins radiating to the oscula. The colour (in pirit) is a fantly yellowish pale grey with the least possible tinge of olive-green; at the same time, the sponge has a slightly subtranslucent appearance, somewhat recalling that of wax. The comsistency is rather fleshy, moderately soft, yet fairly tough and elastic; the branches stand firmly erect.

The dermal pores are disposed in the mamer shown in Pl . xxvi., fig. 2 , ant Pl. xxvii., fig. T. They vary from 30 to 85μ in diameter, and numbor, on the average, between 60 and 70 per $\mathrm{sif} . \mathrm{mm}$.
sheleton.-'The skeleton, as seen in its entirety (Pl. xxiii., fig.1), is of a light greyish colour, tinted very faintly with brownish pale yellow in the condensed axial region and in its older portions. By reflected light alone; the axial condensation ean barely be perceised, being obsewed from view by the extra-axial skeleton; lut with the opposite illumination, as when the skeleton is held directly between the eye ant the light-it is seen as a sharply alelimited, apparently solitl core, occupying about one-fourth the diameter of the branches. The extra-axial skeleton appears, at first sight, to consist solely of radially directed fibres-: to 3 mm . in length—which are inclined to the forwart direction of the axis at an angle varying from about 30° in the distal region of the branches to about 45° in the basal; but, on closer inspection, transverse fibres (very rare towards the periphery of the skeleton, but becoming fairly mumerous as the axis is approached) eonnecting these can be made out. The extra-axial skeleton is rather scanty-its effectiveness in concealing from view the axial condensation being due mainly to the very oblique inclination of the radial fibres.

The radial fibres are from 30 to 70μ (rarely more) in stontness, anf, speaking generally, eonsist almost entirely of megascleres regularly amanged in close parallelism,-the spongin cementing the spicules selfom forming a very well defined sheath, and more usually being so small in quantit as to be
barely discernible unless stained. The main fibres of the axial skeleton are mostly corser-up to 90 or 100μ in stoutnessand much more sponginous, and the spicules composing them are less compactly arranged; they form by interunion among themselves, and with the aid of numerous short comecting fibres, a dense, lattice-like meshwork, in which the course of the individual filmes is rather difficult to trace. The extra-axial connecting filmes oceur at irregular intervals, and are either single (spongin ensheathed) spicules or, more usually, are composed of several (selfom more than five or six) disorderly-arranged spicules interunited by spongin.

1/eyforcleres.-The megaseleres are oxea and relatively few styli, the number of the latter being approximately somewhere between one-fifteenth and one-thirtieth that of the former; among them, an occasional strongyle is also to be met with. They are almost invariably curved, -as a rule a little angulately; are (with the exception of the very stontest) of uniform, or nearly uniform diameter throughout their length to within 25μ or less of their extremities; and usually taper thence, either remularly or with the intermediacy of one or two more or less abrupt contractions, to a sharpor only slightly rounded-off point. Spicules with much blanted extremitics, however, are, in some specimens, by no means uncommon. A certain propertion of the irregulally-ended spieules teminate mueronately. Among the megascleres of the stalk-rarely, if ever, in other parts of the sponge-becasional (yet eonstantly occurring) ones are met with which taper almost (or, if stylote, quite) from end to end in one direction, i.e., are markedly ansoactinal. In the stalk, also, the megascleres attain to a much greater maximum size than elsewhere, and are often slightly more fusifom in shape. In thee of the examined specimens (including among them the one with rare microstrongyla) the megascleres are of approximately the same dimensions-ranging from about 160 (but ravely below 200) to 300μ in length, and up to 9μ in stoutness, in the branches, and attaining a maximum size of $440 \times 15 \mu$ in the stalk: in the fourth specimen-in which, also, the megaseleres
are much more fiequently blunt-pointed - they are notably larger, 180 to 370μ long and (at most) 11μ stont in the branches, and occasionally attaining to $510 \times 17.5 \mu$ in the stalk.

Microscleres.-(i.) The spirule (Textfig. 3) are mostly of less than 2 turns, rarely of more than $2 \frac{1}{2}$. Rod-shaped derivatives of them, of all lengths between t and 23μ, and from 2 to 35μ in diameter are fairly common-numhering, say, one to every forty or fifty of the coiled spicules; the latter rarely exceed 25μ in diameter.

Text-fig.3.*
(ii.) The microstrongyla are imperfectly differentiated into two kiuds: (1) slenderer, in varially centrotylote forms ranging in length from 12 to 27μ and in diameter from less than 1μ up to 3 or 3.5μ, and (2) stouter, racely centrotylote ones, occasionally as much as $\pi \mu$ in diameter, and seldom more than 20μ in length. 'The former are present in great abundance in three of the examined specimens, but are almost, or entirely absent from the fourth; the latter are scarce in all four specimens.

Text-fig. 4. \dagger

[^3]Abnormal forms among the microstrongyla (of the kind shown in the 'lext-fig.) are of more frequent occurrence in the present, than in any other of the species excepting T'. pustulosus, their proportionate number being not less than one in thirty.

Trachycladus digitatus var. fracilis, var.nov.
(Pl. xxii., fig.3; Pl. xxiii., fig.2; Pl. xxvii., fig.2.)
Diaynosis.-Branches slender (2 to 35 mm . in diameter); of uniform diameter throughout their length. Oscula seattered irregularly. Dermal layer with closely packed spirule throughout its entire thickness. Radial fibres of lesser length than the diameter of the axial fune. Megascleres almost exelusively sharp-pointed oxea; stylote modifications much more frequent in occurrence than strongylote; maximum size, $530 \times 23 \mu$ in the stalk, rarely as much as $430 \times 15 \mu$ in the branches.

Loc.-Port Jackson.
Occuring in the collection is a single specimen (labelled as from Port Jackson, and well-preserved in alcohol) which, while presenting the more essential features displayed by the typical form of the species, yet differs in many respects so appreciably from the above-described specimens that it seems advisable, provisionally at least, to regard it as constituting a separate variety. The differences which distinguish it externally (Pl. xxii., fig.3) are chietly these: the cylindrical, untapered branches are comparatively slender, measuring only from 2 to 3.5 mm . in diameter (the specimen itself being 115 mm . in total height); the consistency is very firm, the branches being stiffly flexible and but slightly compressible; and the colour superficially is a subtrans. lucent slaty-grey. The size and distribution of the pores and of the uscula are much the same as in the typical variety, except that the pores are smaller (not exceeding 65μ in diameter), and their linear reticulate arangement (Pl . xxvii., fig. 2) is more pronomed. As in the typical variety also, the main exhalant canals leading to the oscula are visible through the dermal membrane, presenting an appearance as of veins; but they are bere very much more distinct, and are traceable for a much greater distance
from the oscula. The remal membrane varies from 50 to over 100 (rarely to 130μ) in thickness, and is closely packed throughout with spirule.

The distinctive internal features are the very much greater relative development of the axial fune as compared with the extraaxial skeletm, the slightly stouter and more sponginoms fibres, amb the greater dimensions of the megascleres. In the first-mentionel respect, as mey be seen from the figme(Pl. xxr., fig. ${ }^{2}$), the skeleton (which is of a pale brownish-grey tint) appraches rather closely to that of T'. secterosers-inasmuch as, throughout the greater part of the length of the branches, the axial condensation vecmpies not less than three-fonrths of their diamster; only towards the extremities of the branches do the ratial fibres becone distinetly apparent, and even there their length never much exceeds 1 mmn . The diameter of the radial fibres varies from 30 to over 80μ, and their spicules are always smrounded by a well-defined, though usually very thin layer of sungin. The spongin dues not extend to the very extremities of the fibres, but terminates quite aborpitly a short distance therefrom, leaving the endmost spicules free.

In correspondence with their greater strutness, the megascleres (rff. 'Text-figs. t and 5) are slightly more fusiform than in the typical variety; and their apices

Text-fig. .).-Trethydadue thigitatus var. grucilis. Negascleres: ". firom the stalk; l, from the banches.
are nearly always sharply and regularly pointed. Styli are of rather frequent occurence, their proportionate number being approximately one in ten; anisoxea are met with in the stalk and very rarely also in the branches. They range in length from about 280 to 420 or 430μ (with a maximum stoutness of 14 or 15μ) in the branches, and up to 530μ in length by 23μ in stontness in the stalk.

The spirule and their derivatives are without distinctive features, either as regards size or relative numbers.

The microstrongyla appear to be exclusively of the stouter kind oceurring in the typical variety, and never centrotylote; they are moderately scarce, and attain a size of 20 by 5μ. "

Trachycladus digitatus var. clavatus, var:hov.

(Pl. xxii., fig.t; Pl. xxiii., fig.3; Pl. xxv., fig.2; Pl. xxvii. fig.3: Pl. xxviii., fig. 5 ; Pl. xxix., fig.l.)
Diaynosis.-Branches gradually increasing in diameter distally, thus becoming elongately club-shaped and attaining to fair stoutness. Oscula in part scattered irregularly, and in part (or sometimes almost without exception) arranged more or less distinctly in two longitudinal series on opposite sides of the branches. Radial fibres gencrally nearly twice the diameter of the axial fme. Megascleres chietly sharp-pointed oxca, but intermerliate forms between these and strongyla are more or less firequent; stylote modifications comparatively rare: maximmm size varyins (in different specimens) from $400 \times 1+\mu$ to $480 \times 17 \mu$ in the stalk, rarely exceeding $300 \times 9 \mu$ in the branches.

Loc.--Port Phillip.
This variety is based upon three specimens markedly distinguished from all the remaining available examples of the species by the shape of the branches, which gradaally increase in diameter upwards from their base, attaining their maximal stoutness at no great distance from their extremities. Two of the specimens are comprised amongst those recorded by Dendy(7) as examples of Trochycladus lerispirulifer Carter, -being, namely, the two (with the reg. nos. 415 and 1046) referred to by him as distinguished from the others by their more robust and stouter
branched habit and the more evident microspination of their spinula; the thind, which I select as the type-specimen, is in the collection of the Australian Museum.
E.stermal charerters.-Of the three specimens, two (which are excellently preserved in alcohol)-viz., the Australian Museum specimen and R.N. 1046-are exceedingly alike in all hot size; the former (Pl. xxii., fig.t) measures 145 mm . in total height, the latter 100 mm . Their hanches are, without exception, circular or nearly so in cross-section, attain a maximal stontness distally of from 10 to $1: 2 m m$, and are seldom more than 5 mm . in diameter at the base: the extremities of the hanches are never in the least degree pointed. The surface is perfectly even and glabonos, without the faintest trace of granulation. The oscula are mimute, seldom as much as $0 . t$ mm. in diameter, and for the most part we scattered irregularly ; in places, however, they exhibit a tendency towards a longitudinal serial arrangement. Excurrent canals leading to the oscula are not visible through the dermal membrane. 'The colour in alcohol, both superficially and for some distance interiorly; is an opanue pale creamy-white; proceeding towards the axis, it gradually becomes more yellowish, owing to the closer approximation of the spongin-ensheather skeletal filnes. The consistency, in the more expanded, distal parts of the branches, is soft and resilient; the hranches are Hexible ant elastic.

The other specimen (R.N. 415), measuring 108 mm. in total height, exhibits the following differences (Pl. xxix., fig. 1) : (i.)'The branches (which vary from 10 to 14 mm . in stoutness) are mostly pointed at the extremities, and rendered inregular by occasional swellings and protuberances (incijpient secondary branches) ; (ii.) the oscula, almost without exception, are arranged along the branches in irregular opposite rows, and the largest are nearly 1 mm. in diameter; (iii.) the surface is minutely wrinkled, and in parts slightly granular; and (iv.) the consistency is comparatively firm and hard, and the banches are brittle rather than Hexible. Otherwise, however, with the exception of the single difference mentioned in the next paragraph, the specimen agrees
in all essential respects with the preceding; and, furthermore, the difterences (iii.) and (iv.) are, almost undonbtedly, dhe merely to the fact of the specimen's having been allowed to become partially dried before being placed in alcohol.

The pores are notably larger in size than in the two preceding varieties, varying in diameter from 40 to 120μ, and are mone uniformly distributed (Pl. xxvii., fig. 3). The dermal layer is from 40 to $90 \mu \mathrm{in}$ thickness, and, in the case of the two similar specimens, is closely packed throughout with spirula. But in R.N. 415, only a superficial layer of the dermis-usually less than 25μ in thickness - is packed with spirule, the remaining portion being occupied by numerous parasitic algal cells.

The skeleton presents no appreciable point of difference from that of the typical variety excepting that the radial fibres are generally much longer-their length, in the expanded portions of the branches, being about twice the diameter of the axial fune (Pl. xxt., fig. 3). The fibres attain, at most, a stoutness of 70 to 80μ, but are usially much slenderer, and are always provided with a distinct, thongh thin sheath of pale-coloured spongin. The skeleton, seen in its entirety, is pale golden yellowish.

The megascleres of the stalk are scancely difterent from those of

[^4]the typical variety, while those of the branches are different only in the fact that their extremities are most frequently more or less blant-pointed, and strongylote forms are common. 'The branch-spicules are of the same dimensions in all three specimens, ranging in length from about 170 to slightly above 300μ and attaining to about 9μ in stoutness: the stalk-spicules have a maximum size, in the type-specimen, of (rarely) $480 \times 15 \mu$: in R.N. 1046 , of $450 \times 17 \mu$; and in R.N. 415 , of $400 \times 14 \mu$.

The spirule are not distinguishable from those of the typical variety. Microstrongyla are rather scaree in R.N. 415, and in the other two specimens are extremeiy rare or absent; apparently they are never centrotylote, and are at most $15 \times 3 \mu$ in size. Almomal forms of the mirrostrongyla, such as occom in the typical variety, were not olserved.

'Trachycladus digitatus var. strongitatus, vell:nov.

 (Pl. xxii., fig. \bar{y} : Pl. xxiii., fig.4; Pl. xxvi., figs.:', 6; Pl. xxvii. tig.4.)Dingnosis. - Branches eylindrical, untapered, moderately slender: Oseula irregulanly scattered. Dermal membrane with closely packed spimbe confined to a superficial layer seldom as much as 2.5μ in thickness. Radial fibres of lesser longth than the diameter of the axial fume. Megascleres chietly strongyla and very blunt-pointed oxea,-those in the branches rarely ex ceeding 290 by 7μ in size.

Loc.-Port Phillip.

- This rariety is represented by a single intomplete (but excellently preserved) example (Pl. xxii.. fig.5) - consisting only of a pair of united branches-the appearance (of the proximal part) of which suggests its having grown from a small broken-off piece of another specimen. As compared with the representatives of the preceding varieties, the specimen is distinguished chiefly by the more or less strongylote character of the majority of its megascleres-in which respect it rather resembles an example of 7. reteporosus: this statement, howerer, is possibly true only as regards the megaseleres of the branches, since a stalk is lacking. The branches are cylindrieal and slender, 3.5 to 5 mm . in diameter:

The surface is minutely granular. The oscula are scattered irregularly, and vary in diameter from 0.3 to 0.75 mm . The colour superficially is pale brownish-grey. The dermal pores (PI. xavi., figs.3, 6; Pl. xxvii., fig.t) are for the most part scattered singly and irregularly, as in the variety clacutus, but here and there, expecially on some parts of the surface, they exhihit also a tendency to liecome arranged several together in incipiently sievelike groups; they range from 40 to 110μ in diameter. The dermal

Text-fig. z^{*} * membrane is rarely, if ever, more than 50 or 60μ in thickness; and the dermal spirule are confined to a superticial layer which is at most 25μ in thickness.

Examined in its entirety, the prepared skeleton (Pl. xxiii., fig.t) is of a pale gohlenyellow colour, fine-textured, and of soft feel, and of densel appearance extra-axially than that of any other of the varieties or species owing to the greater number and closer arrangement of the radial and comecting fibres, which quite conceal the axial core from riew; the core itself is less dense than that of the other varicties. The radial fibres, which are of slightly lesser length than the diameter of the core, are mostly between 30 and 50μ-rarely as much as 60μ -in stoutness, and are seldom provided with spongin sufficient in quantity to form a distinct ensheathing layer.

The megascleres in the uppermost part of the branches consist almost entirely of strongyla and blunt-pointed oxea (the former somewhat the more numerons), and rarely if arer exceed 300 by $7 \cdot 5 \mu$ in size: the length of the shortest spicules is less than 150μ, and individuals below 200μ in length are common. At the

[^5]lowermost extremity of the (incomplete) specimen, the megrascleres are still chietly strongyla, but they comprise also a quite appreciable number of more or less sharp-pointed oxea, and range in size up to 350 by 10μ. The spinispirule and their more or less rod-shaped derivatives (the latter of which are rather rare) are very seldom, if ever, more than 2μ in stontness. Microstrongyla were not observed.
'Trachychadets reteporosus, sp.new. (et varto ?).
General diuguosis.-Branches elongated and tapering. Sinrface smosoth to slightly granular. Osenda entirely, or for the most part, disposed in longitudinal series. Dermal membrane at most 50μ in thickness; with closely packed spirulae oceurring only in a thin superficial layer. Dermal pores arranged wholly or in part in subeircular siere-like groups; in any case, the distance separating abloning pros is genemally very much less than their own diameter. Skeleton with a relatively very dense axial fune of diameter equal to or less than the radial fibres. Radial fibres directed at an angle rarying from (rarely less than) 45° to nearly 90° to the skeletal axis; never more than about 50μ in stontness: generally with a well-defined, thongh thin spongin-sheath. Megascleres chiefly strongyla and rery blunt-pointed oxea, the former somewhat the more numerous: only occasionally slightly larger in the stalk than clsewhere: varying in maximm size (in different specimens) from -90×7 to rarely (in the stalk) $330 \times 10 \mu$.

Loc.- Port Phillip.
The specimens which I ascribe to this species exhibit in certain respects considerable variability, so that it is impossible to be certain whether they are representative of several genetically distinct forms or owe their differences merely to individual variation. A second difticulty in connection with the species arises from the fact that, in certain of the specimens, the mode of disposition of the dermal pores approaches somewhat closely to that characteristic of T. digitutus, and in others again, owing to their shrunken condition, the pores are not discemible: in the case of these specimens, accordingly,-since no appreciable difference
exists in spiculation between the present species and T. digitutus var: strongylatus, - the only definitely definable character justifying their inclusion in the present species, wather than in T'. digitutus, is the elongate tapering habit of their branches. Among the remaining specimens, howerer, there is one which in various respects stands considerably apart from all the rest, and in these respects also is by far the most divergent from T ' rligitufus. I therefore select this specimen to represent the typical form of the species, and the remainder T refer provisionally to an molesignated variety, leaving the problem of their correct allocation to be determined in the future.
'T. Reteporosus, typical form.
(Pl. xxi., fig...: Pl. xxiii., fig.万̃; Pl. xxiv., fig.?; Pl. xxvi., figs.1, 4,7 ; Pl. xxvii., fig.5.
The single, excellently preserved specimen (Pl. xxi., fig. 2), which measmes 340 mm . in total height-consists of a half-seore of long, lax, straight, gradually tapered, main branches (160 to 250 mm . in length), arising dichotomously and sub-richotomously within a comparatively short distance of the short stalk, and of about the same number of shorter (10 to 120 mm . long), but otherwise similar, sporadically occorring secondary branches. But for overlapping and occasional slight torsion, the branches would be disposed in a single plane, and the habit of the sponge Habellate. The branches, in addition to tapering distally, are also more or less narrowed proximally (attaining their maximum stoutness usnally at some considerable distance above their lase), and, with the rexception of a few of the shorter ones, are generally more or less compressed in the plane of branching; the stoutest measure at most 12 or 13 mm . in the major diameter of their cross-section, and 9 to 10 mm . in the direction at right angles thereto. Anastomosis between the branches does not oceur. 'The oscula, which measme n p to 0.75 mm . in diameter, are arranged ahmost exclusively, though not always very regularly, in two longiturlinal series situated on opposite sides of the branches, or occasionally in a single longitudinal series. The surface is smooth and even, without the faintest trace of granu-
lation; on close inspection, it presents a minutely reticulate appearance due to the dermal pores ($\mathrm{Pl} . \mathrm{xxvi}$, fig.4). The dermal membrane is thin and (owing to the multitude and close apposition of the minute pores) of gauzy appearance, - permitting to be perceived through it, more or less distinctly, the subdemal pinhole-like openings which are the entrances of the incurrent canals. The consistency is rather fleshy, soft, and resilient, and the branches are flexible and lax. The colonr in alcohol is pale orange-yellow.

The dermal pores are arranged in closely approximated, oval to circular groups or "pore-sieves" (Pl. xxvi., figs.4, 7; Pl. xxvii., fig 5) containing each from 3 to 8 pores, and measuring up to 350μ in diameter: the pores themselves measure from 50 to about 100μ in diameter. Very commonly, the boundaries between the sieves are scarcely more pronounced or wider than those separating the pores, so that, in places, the lines of demarcation between the sieves become obscure and the pores appear almost to be uniformly distributed. Within the pore-sieves, the dermal membrane is extremely thin, and contains but very few spirule sparsely scattered.

Skelpton. The skeletal axis or core is much more sharply defined and delimited than in any other of the species, and is equalled in density only by that of T'. fustigatus; in comparison with the stoutness of the branches, it is rather slender, measuring in diameter generally not more than two-thirds of the length of the radial fibres. The radial fibres proceed outwards from the axis in a direction inclined to it at an angle of 60° and upwards, and arrive at the surface almost perpendicularly thereto. Connecting fibres between the radial fibres are extremely few; consequently, in the prepared or macerated skeleton (Pl xxiii. fig. 5), the radial fibres are easily disarranged and thus usually present a somewhat dishevelled appearance. The colour of the skeleton is pearl-grey except axially, where it is brownish-grey. The radial fibres are rarely as much as 50μ in stoutness, and are usually provided with a distinct layer of spongin external to the spicules. The comecting fibres consist frequently of only a single spicule, and seldom of more than two.

Megascleres.-Contrary to what is the case in the other hereindescribed speeies, T'. fastigatus excepted, the megaseleres are but

'Text-fig.s.* very rarely, and then only very slightly, of larger size in the stalk than in the branches. They are ehiefly strongyla and blunt-pointed oxea approximating more or less in form to strongyla; quite sharp-pointed oxea are comparatively scarce. The strongyla are usually cylindrical or nearly so throughout their whole length, the oxea to within a short distance of their extremities. They attain a maximum size of 300 by $8 \cdot 5 \mu$. Individuals above 280 by 7μ are rare, and these for the most part are slightly fusiform oxea with more or less sharppointed extremities. The shortest spieules are less than 130μ in length, and almost invariably strongyla.

Microscleres.-The spirulæ are usually of less than 2 complete turns, rarely, if ever, of as much as $2 \frac{1}{2}$; they are somewhat slenderer than those of other species, their diameter very seldom slightly exceeding 1.5μ. Rod-shaped derivatives of the spirulæ, attaining a maximum size of about 17 by 1.7μ, are very scarce.

Microstrongyla are apparently absent.
T. Reteporosus, var. (ant varr. ?).
(Pl. xxi., fig. 3; Pl. xxiii., figs.6-8; Pl.xxiv., figs.1, 2: Pl. xxv., fig.l;
Pl. xxviii., figs.1-4; Pl. xxix., fig.2.)

The remaining speeimens referable, or seemingly referable, to the present species (but distinguished in various respects from the above-described typical example) are eleven in number, comprising ten of those recorded by Dendy(7) as T. lavispirulifer

[^6]Carter, together with an incomplete specimen occurring in the collection of the Australian Museum: the register-numbers of the former are 297, 366, 426, 470 (two spms.), 983, 984, 1000 (two spms.), and 1061. So far as skeletal features are concerned, the specimens exhibit no marked differences (either among themselves or from the typical example), except in certain details of their microspiculation; but the extra-axial skeleton is somewhat less sparse than in the type-specimen,-as may be observed from a comparison of the figures illustrating the appearance of the entire skeleton,--and the colour of the skeleton (in the denser portions thereof) is not brownish-grey, but varies from pale straw-yellow to light golden-yellow. The megascleres are, in all of them, of approximately the same forms and dimensions as in the typical specimen, the greatest deviation by far occurring in in the case of R.N. 426, in which the megascleres of the stalk attain a maximum size of 325 by $9 \cdot 5 \mu$, while those of the branches rarely exceed 290 by $7 \cdot 5 \mu$. All likewise agree with the typespecimen in possessing long and relatively rather slender branches, which attain their maximum stoutness at some distance above their base; and, with rare exceptions, the branches taper more or less distally. On the other hand, in a number of other external features, and especially in the distribution of the dermal pores, considerable variability is displayed. Non-anastumosis between the branches is the rule. The colour, except in one instance, is some shade of pale yellowish-grey.

Exact resemblance to the typical specimen, as regards the mode of disposition of the dermal pores, is shown only by the incomplete specimen which is in the collection of the Australian Museum. In this specimen, the surface is somewhat ruggedly uneven (Pl. xxi., fig.3), the branches (with a maximum stoutness of only 8 mm .) are not at all flattened, and the colour is a slightly salmon-pinkish stone-grey. Microstrongyla are absent. (A photograph of the macerated skeleton is shown in Pl . xxiii., fig.6).
R.N. 1061 approaches the typical specimen in general habit (Pl. xxiv., fig.1), but the branches are much less tapered (occasionally of nearly uniform diameter throughout their length), the surface is faintly granular and somewhat uneven, and the oscula
are almost as frequently scattered as arranged serially; the consistency, also, is comparatively firm. The branches vary from (rarely) cylindrical to mach compressed, and are usually somewhat lenticular in cross-section. The pores are almost or quite as closely situated and numerous as in the typical specimen, but for the most part they are not arranged distinctly in groups. The spirule are peculiar in the fact that they are much less closely coiled than in any other example of the genus, the shape of most of them approaching more or less to that of a contort S; more or less C or (shaped forms are also common, but straight or nearly straight rods are extremely rare. Scarce (though by no means rare) microstrongyla are present, varying from 9 to 16μ in length and from 2 to 4μ in stoutness, and almost invariably centrotylote. (A photograph of the macerated skeleton is reproduced in Pl . xxiii., fig. 8).

The two specimens R.N. 1000 are much alike in general habit, - which probably accounts for their being registered under the same number, - and differ from all the other specimens, with the exception of R.N. $36.9,983$, and 984 , by the occasional coalescence of their branches: the branches are slender ($\overline{5}$ to 8 mm . in (liameter), gradually tapered, and not at all compressed: and the surface is somewhat uneven and slightly granular. Nevertheless, in one of the specimens the pores are arranged (Pl. xxviii., fig. -) very nearly as in the typical specimen, while in the other they are distributed singly (Pl. xxviii, fig.l) almost in the same manner as in T'. digitatus. In both, microstrongyla are exceedingly rare.

In R.N. 983 and 984 the arrangement of the pores (Pl . xxviii., figs.3, 4) is intermediate between that obtaining in R.N. 1061 and that characteristic of T. diyitatus var. strongylatus. The former specimen consists solely of two long branches (one simple, the other with a partially coalescent secondary branch towards its upper extremity), measuring respectively 200 and 300 mm . in length, and both arising almost independently from a small common dise of attachment without the intervention of a stalk. The branches are only 4 mm . in diameter proximally and increase in stoutness upwards very gradually, the larger one attaining a
maximum diameter of 12 mm . at a distance of ahout 50 mm . from its apex, and thence gradually tapering to a point, the smaller one 8 mm . in greatest stoutness and distally mitapered. The other specimen, R.N. 984, consists only of a broken off pair of fused branches somewhat similar to those just described.
R.N. 426 is in one respect unique: the surface is finely hispid, being rendered so by the extremities of the radial skeletal fibres, which everywhere project $\frac{1}{2}$ to 1 mm . beyond it, presenting the appearance of delicate hairs. Furthermore, although the specimen appears to be excellently preserved, the dermal pores have entirely disappeared, and even the oscula are completely closed. Since the skeletal fibres are altogether too slender and weak to be considered capable of withstanding the bending strain which a shrinkage of the sponge due to the action of the preservative fluid would exert, the peculiar condition of the specimen must almost certainly be the result of contraction while in the living condition. In general outward habit, as is evident from the figure (Pl. xxir., fig.2), this specimen rather resembles the typical specimen. Scarce strongyla are present, similar to those of R.N. 1061.

The two specimens R.N. 470 consist each of only a few detached branches, which, apart from being non-hispid, are exactly similar in every way to those of the preceding specimen. In one of these specimens, no microstrongyla were observed; in the other (and in this alone of all the specimens) they are fairly abundant, resembling in form and size those of II.N. 1061. (A photograph of the macerated skeleton is shown in Pl. xxiii., fig. 7).

In R.N. $\because 97$ and 366 , - both of which are in a dried, much shrunken condition, and consequently afford no information regarding the pores,--the spirule are distinguished by being mostly of less than one complete turn and lience more or less C-shaped; straight rods of all lengths from 3 to upwards of 1.5μ are also common, especially the shorter ones. R.N. 366 consists of a main stem or branch, about 200 mm . in length, attached by its base (which spreads to form a thin incrusting dise about 4 mm . in area) to the surface of a shell, and sending off on one side, at the distances of 50,60 , and 50 mm . respectively from it.
base, three secondary branches which become coalescent with one another. R.N. 297 is unique in consisting solely of a long slender unbranched stem, 250 mm . in length. In both specimens the extremities are tapered. In weither were microstrongyla observed.

'Irachycladus pustulosus, sp.iov.

> (Pl. xxi., fig.5; Pl. xxvi., figs.5, 8; Pl. xxvii. fig.6; Pl. xxxix., figs.6, 7.)
1887. (?)Spirophora bacterium Lendenfeld (26), p. 795.

Diagnosis.-Branches quite short and distally expanded: sometimes so abbreviated as to be little more than mammiform lobes. Surface closely studded with small pimple-like elevations, and exhibiting, on close inspection, a minute reticulate pattern due to the mode of arrangement of the dermal pores. Oscula situated only on the more distal parts of the branches. Dermal pores arranged in close-set, subcircular, sieve-like groups, usually with from 3 to 7 pores in each group. Dermal layer loosely packed with spirulæ usually throughout its entire thicknesswhich varies from 40 to 80μ. Skeleton in the upper, more expanded, parts of the branches not forming an axial fune. Fibres stout, and provided with much spongin. Megascleres in the upper parts of the branches consisting almost exclusively of strongyla and oxea in about equal numbers, and rarely attaining to $320 \times 9 \mu$ in size; peduncular megascleres chiefly oxea (together with occasional styli and only rare strongyla), attaining a maximum size of $460 \times 15 \mu$. Microstrongyla extremely abundant, frequently assuming various abnormal shapes, and in part reduced to spheres.

Loc. . Port Phillip.
This species,--of which two well-preserved specimens are at hand, one incomplete, consisting only of a few branches,-is characterised especially by its short stunted branches and very noticeably pimpled surface, and by the fact that the skeleton, except in the stalk and the lowermost part of the longer branches, is only slightly or not at all condensed axially (Pl. xxxix., fig.6). Whilst these features sharply mark it off from all the other
known species, it is still further distinguished by having the pores arranged in sieve-like groups (Pl. xxvi., fig.5)-in which respect it is approached only by T. reteporosus-and by the reduction of the microstrongyla in part to spheres. An adequate idea of the external habit will be obtained by reference to the figure (Pl. xxi., fig.5) of the single complete example, which measures 60 mm . in total height: in the case of the other specimen, the branches are somewhat longer, several of them attaining a length of 25 mm . The colour in alcohol is a minutely mottled, slightly brownish pale grey, and the consistency is firm, fairly tough, compressible and resilient.

The surface-pimples, - which coincide in position with, and to some extent are the expression of, the points of impingement of the skeletal fibres upon the dermal membrane,-are fairly uniformly distributed over the whole surface at a distance apart approximating to their own breadth, which on the average is about 0.4 mm .; they are rounded or flattened above, not conulelike, and are conspicuous not so much by the amount of their projection - which at the most is but slight-as by their whitish colour and more opaque appearance compared with the intervening portions of the surface. At the locations of the small areas formed by these elevations, the dermal membrane is closely adherent and non-porous; but between them it overlies subdermal spaces, and is so perforated by numerous small poresieves as to appear minutely reticulate. The pore-sieves (Pl . xxvi., fig. 7; Pl. xxvii., fig.6), are oval to circular in outline and generally between 40 and 120μ in distance apart, range from less than 100 up to about 200μ in diameter, and contain each, according to their size, from 2 to 8 pores of diameter varying from 20 to 60μ.

Skeleton.-Except in the stalk and the lower portions of some of the lower branches, the skeleton exhibits no well-marked axial condensation or core, but is rather of the dendritic type (Pl. xxxix., fig.7) consisting chiefly of longitudinally-running and of gratually outward-trending, continually branching main fibres, which are not distinguishable as axial and radial respectively; transverse or connecting fibres are numerous between the main
fibres in the central region of the branches, but comparatively scarce and somewhat irregular in occurrence towards their surface The main fibres attain a stoutness occasionally of nearly 200μ in the axial region of the skeleton, but diminish in diameter peripherally to bet ween 60 and 100μ; they are composed
 of somewhat loosely and irregularly packed spicules united by abundant spongin-cement. The connecting fibres are usually less than 50μ in stoutness and are composed almost entirely of spongin. The spongin shrinks considerably on drying, so that in the dried skeleton the stoutness of the fibres is much less than stated above. The skeleton seen in its entirety (Pl. xxxix., fig 6) is of a golden-yellow colour.

Meyascleres. - The differences between the megascleres of the stalk and of the branches are more marked than in any other of the species herein described, the former consisting almost entirely of sharp. pointed oxea, ranging from seldom less than $250 u p$ to 460μ in length and up to 16μ in stoutness, and very similar in form and size to those of T'. digitatus var. strongylutus, while the latter are strongyla and more or less blunt-pointed oxea - the strongyla being if anything Text-fig.9.-Truchycladus pustu-somewhat the more numerous-lowns. Megasceleres: a, from the ranging in length from occasionally stalk; l, from the branches. less than $150 \mu \mathrm{up}$ to about 320 or 330μ, and seldom exceeding $8 \cdot 5$ or 9μ in stoutness. Occasional styli are met with, which are most frequent among the peduncular megascleres; among the latter also anisoxea are not uncommon.

Microscleres.-- The spirulæ are of all forms between corkscrewspirals of a little more than 2 turns and straight rods, the latter fairly common and mostly between 12 and 25μ in length and from 2 to $3 \cdot 5 \mu$ in diameter. The spirule are less closely coiled than in any other of the species, and are also slightly larger (occasionally attaining to 15μ in length).

The microstrongyla are rarely less than 2 or more than $3 \cdot 5 \mu$ in diameter, and of all lengths up to 18μ; a notable proportion are reduced to splserule. They are mostly not centrotylote. Abnormal forms of various shapes are tather common.

FNTLANATION OF 1'LATES XXI.-XXIX., figs. $1-2:$ XXXLN., figs. $6-7$.

 Plate xxi.Fig. 1.-Truchychudus fentigulus, sp. nov: from the (partially dried) typespecimert; ($\times \frac{3}{8}$).
Fig.2.-T'. reteporoans, sp.nov.; from the type-specimen; ($\times \frac{1}{3}$).
Fig.3.-T. releporonns, spons. (var. ?); from an incomplete specimen with slightly rugose surface; $\left(\times \frac{1}{2}\right)$. (f. also I'l. xxir., figs.l-2.
Fig.t.-T. actrosus. sp. 1 ov: ; from the type-specimen; ($\times \frac{2}{3}$).
Fig s.-T. fustulonis, sp.nov.; from the type-specimen; ($\times \frac{4}{5}$ neaty).

Plate xxii.

Fis.3.-T. digitates vat. gracilis, vathos.; from the type-specimein; ($\times \frac{5}{6}$).
Fig. 4. T. digitatus var. clarutus, var:nov.; from the type-specimen; $\left(\times \frac{3}{4}\right.$ nearly).
Fig. \bar{s} - T. digitalux var. shongylulux, var.now; from the (incomplete ?)

- type-specimen; ($\times \frac{9}{10}$).

Plate xxiii.

Fig. l.-Trachycludux digitntux Lendenfeld, typical form; skeleton; (nat. size).
Fig.д.-T. digitutue var. afrucilis, var.nov.; skeleton; (nat. size).
Fig.3.-T. digitahes var. clurufus, var:nov.; skeleton; (nat. size).
Fig.t.-T. digitatus var. strongylutus, var. nov.; skeleton; (nat. size).
Figs.i-f.- T, reteporosus, sp.nov.: skeleton (of the type-specimen and of the specimen illustrated in Pl. xxi., fig.3, respectively); (hat. size).
Figs. $-\mathbf{- s}$. - T. reteporoske, sp.nov., (var. ?); skeleton (of the specimens figured in Pl. xxiv., figs. 1-2); (1at. size).
Fig.!.-T. xcturroxu, sp, nov.; skeleton; (nat. size).
Fig.10.-T. fustifutus, sp.nov.; skeleton; (nat. size).

Plate xxiv.

Fig. 1.-Trachycludus reteporosus, sp.nov., (var. ?); R.N. 1061 ; ($\times \frac{1}{2}$).
Fig. $2 .-T$. reteporosux, sp.nov., (var. "); R.N. 426 (a specimen in which the (lermal pores could not be seen); ($\times \frac{1}{2}$).
Fig.3.-T. reteporosu*, sp.nov., typical form; one-half of a (desilicified) longitudinal median section of a branch of the type-specimen, showing the dermal layer (in part torn away), subdermal spaces, excurrent and incurent canals, flagellated chambers, and (on the left) portion of the axial skeleton; $(\times 18)$.

Plate xxy.
Fig. 1.-Truchycladus reteporosus, sp.nov., (var. ?); longitudinal median section of the skeleton; $(\times 10)$.
Fig.2.-T. digitatus Lendenfeld, var. claratus, var.nov.; portion (slightly less than one-half) of a transverse section of a branch, showing the arrangement of the flagellated chambers, etc.; $(\times 18)$.

Plate xxvi.

Fig. 1.-Trachyclulux reteporoxu*, sp.nov., (typical form); longitudinal median section of the skeleton, showing the pattern of the axial fune; $(\times 10)$.
Fis.2.-T. digitatus Lendenfeld, (typical form); portion of the surface (from part of which the dermal membrane has been pared off) showing the disposition of the dermal pores, and also of the main incurrent canals: $(\times 6)$.
Fig.3.-TT. digitatum var. strongylatus, var:nov.; portion of the surface, showing the arrangement of the dermal pores and the character of the oscula: $(\times 6)$.
Fig. 4. - T. reteporosur, sp.nov.; portion of the surface, showing the arrangement of the dermal pores; $(\times 6)$.
Fig.5.-T'. pustulosus, sp.nov.; portion of the surface, showing the arrangement of the dermal pores; $(\times 6)$.
Fig.t.-T. digitutus var. stromglatux, var.nov.; portion of the surface, showing the arrangement of the dermal pores; $(\times 20)$. (From a drawing).
Fig. 7.-T. reteporowns, sp.nov., (typical form): portion of the surface, showing the arrangement of the dermal pores; $(\times 30)$. (From a (drawing).
Fig.8.-T. pustulown, sp.nov.; portion of the surface, showing the arrangement of the dermal pores: $(\times 30)$. (From a drawing).
Fig.9.-T'. digitatux Lendenfeld, var. gracilis, vas.nov.; moderately thick, transverse section of a branch; ($\times 18$).

Plate xxvii.

Fig. 1.-Tirechycladu* digitutus Lendenfeld, (typical form); surface-section, showing the arrangement of the dermal pores; $(\times 40)$.
Fig.2.-T. digitatux var. grucilis, var.nov.; surface-section, showing the arrangement of the dermal pores; $(\times 41)$.
Fig.3.-T. Nigitatus var. claratus, var.nov.; surface-section, showing the arrangement of the dermal pores; $(\times 40)$.
Fig. 4.-T. digitutux var. strontylatus, var. nov.; surface-section, showing the arrangement of the dermal pores; $(\times 40)$.
Fig.. -T'. reteporoxu, sp.nov., (typical form); surface-section, showing the arrangement of the dermal pores; $(\times 40)$.
Fig.6.-T'. mustulows, sp.nov.; surface-section, showing the arrangement of the dermal pores; $(\times 40)$.

Plate xxviii.

Fig. 1.-Trachycladux reteporowns, sp.nov., (var, ?); portion of the surface (of one of the specimens R.N. 1000) showing the arrangement of the dermal pores; ($\times 40$).
Fig. 2.-7'. reteporowns, sp.nov., (var. ?); surface-section (of R.N.1061), showing the arrangement of the dermal pores; $(\times 40)$.
Figs.3, 4.-T. reteporowns, sp.nov., (var. "); surface-sections (of the specimens R.N. 983. 984), showing the arrangement of the dermal pores; ($\times 40$).
Fig.... T. rligitatus Lendenfeld, var. clumbus, var.nov.: rather thin (undesilicified) transverse section of a brauch; $(\times 15)$.
Fig.6.-T'. serabroxus, sp.nov.; rather thin (desilicified) transverse seetion of a branch; $(\times 20)$.

Plate xxix., tigs. 1-2.

- Fig. 1. -Trachycludu× digitatus Lendenfeld, var. claratue(?), var.nov.; specimen R.N.415; ($\times \frac{1}{2}$).
Fig.2.-T'. reteporosus, sp.nov., (var.?); thin, transverse section of a brauch - (of specimen R.N. 1000); ($\times 15$).

Plate xxix, figs.6-7.

Fig.6.-Trachycladu: pratulosu*, sp.nov. ; skeleton photographed by transmitted light; (nat. size).
Fig. 7.-T'. pustulowns, sp.nov.; showing pattern of the skeleton as seen in thin longitudinal section (passing throngh three branches and the upper part of their common stem); ($\times \bar{\pi}$).

[^0]: *In this comnection, I may mention that evidence is not wanting which wonld justify the hypothesis that sigmata and chelat have originaterl firom spirasters, perhaps independently; and it is even possible that the acanthoscleres of the Desmatidonida are similarly derived.

[^1]: *Vosmaer, 1i. C. J., "On the distinction between the genera Axinellu. Phutellir, Acunthella, ete." Zool. Jahıb, Nuppl. xr., 1912, p.310, Pl. xri., figs.5, 15.

[^2]: * Certainly no implicit reliance can be placed on the description; for it is beyond question that in "Die Chalineen des australischen (iebietes," as already has been proven to be the case in the "Catalogue of Sponges in the Australian Museum," some (if not many) of the descriptions confound two species (by ascribing to the one the external features of the other),

[^3]: *Spirula and microstrongyla of Truchycluctus digitatus.

 + Trachychadus digitutur. Megascleres: a, fiom the stalk; I, from the branches.

[^4]: * Trachycladus digitutus var. clanatus. Megascleres: a, from the stalk; 1 , from the branches.

[^5]: *Trachycladus digitatus var. strongylatur. Megascleres.

[^6]: * Trachycladu. reteporosu. Megascleres: u, from the stalk; b, from the branches.

